- What would be the approximate length of the day if the earth spun so
fast that bodies floated on the equator? Take the radius of the earth $R=6\times 10^6 m$
and $g=9.8 m/s^2$
(A) 12 hours (B) 6 hours (C) 3 hours (D) 1.5 hourAnswer: Body remains on earth's surface because
$gravitational~ pull ~i.e.~ weight ~of~ the~ body\geq centrifugal~ force ~due ~to~ rotation$
Body will start floating when
$centrifugal~force~due~ to ~rotation> gravitational~pull~i.e. ~weight~of~the~ body$
$$m\omega^2r>mg$$ or $$\omega>\sqrt{\frac{g}{r}}$$ But $$\omega=\frac{2\pi}{T}$$ $$T(in~ seconds)>2\pi\sqrt{\frac{r}{g}}$$
$$T(in~ hours)>2\pi\sqrt{\frac{r}{g}}\frac{1}{3600}=\frac{2\times3.14\times1000\times\sqrt{6}}{3600\times\sqrt{9.8}}=1.5~ hours$$ - The real matrix $A=\begin{pmatrix}a&-f&-g\\ f&a&h\\g&-h&a\end{pmatrix}$ is skew symmetric when
(a) $a=0$ (b) $f=0$ (c) $g=h$ (d) $f=g$ $$$$ Answer: Matrix $A$ is skew symmetric when $A_{ij}=-A_{ji}$. Hence $a=0$ - If $A$ and $B$ are matrices such that $AB=B$ and $BA=A$ then $A^2+B^2$ equals Answer: $$A^2+B^2=(BA)^2+(AB)^2=BABA+ABAB$$ $$A^2+B^2=B\underline{AB}A+A\underline{BA}B=B\underline{BA}+A\underline{AB}=BA+AB=A+B$$
- The average value of function $f(x)=4x^3$ in the interval 1 to 3 is
Answer: $<f(x)>=\frac{\int_1^3f(x)dx}{\int_1^3dx}=\frac{\int_1^34^3dx}{\int_1^3dx}=\frac{[x^4]_1^3}{[x]_1^3}=\frac{81-1}{3-1}=40$
No comments:
Post a Comment