Wave function of a particle moving in free space is given by, \psi=e^{ikx}+2e^{-ikx}. Find the energy of the particle.
Answer: one dimensional Schrödinger equation is -\frac{\hbar^2}{2m}\frac{d^2\psi}{dx^2}+V\psi=E\psi
For a free particle V=0
-\frac{\hbar^2}{2m}\frac{d^2\psi}{dx^2}=E\psi
\frac{d^2\psi}{dx^2}=-k^2\left(e^{ikx}+2e^{-ikx}\right)=-k^2\psi
E=\frac{\hbar^2k^2}{2m}
Answer: one dimensional Schrödinger equation is -\frac{\hbar^2}{2m}\frac{d^2\psi}{dx^2}+V\psi=E\psi
For a free particle V=0
-\frac{\hbar^2}{2m}\frac{d^2\psi}{dx^2}=E\psi
\frac{d^2\psi}{dx^2}=-k^2\left(e^{ikx}+2e^{-ikx}\right)=-k^2\psi
E=\frac{\hbar^2k^2}{2m}
No comments:
Post a Comment